Mastermath Random Walks 2019 - 2020, Exam 27.01.2020

- 1. State the local central limit theorem for simple random walk on \mathbb{Z}^d (that is, the walk that jumps from any vertex x to any of the 2d neighbors of x with probability $\frac{1}{2d}$). Using this result, prove Pólya's theorem for this walk, that is, prove that the walk is recurrent in dimensions one and two, and transient in dimension three or higher. \vee
- 2. Suppose that p is the transition function for a random walk on \mathbb{Z}^d that is irreducible, symmetric, has finite range, and satisfies p(0) = 0. For $\epsilon > 0$, let p_{ϵ} denote the increment of the "lazy walker" given by

$$p_{\epsilon}(x) = \begin{cases} (1 - \epsilon)p(x), & x \neq 0, \\ \epsilon, & x = 0. \end{cases}$$

(a) Show that p_{ϵ} defines an irreducible and aperiodic random walk on \mathbb{Z}^d .

The main objective of this exercise is to prove that for $d \geq 3$ the Green functions G and G_{ϵ} , of p and p_{ϵ} respectively, satisfy the relation

$$G_{\epsilon}(x) = \frac{1}{1 - \epsilon} G(x).$$
 (*)

- (b) Give a probabilistic proof of (\star) , by comparing "dynamics" of the lazy walker to that of the original. How can you relate the number of visits to a given site x?
- (c) Give an analytic proof of (*). Hint: Cha... f.... X
- 3. (a) Let $m, n \in \mathbb{N}$ with m < n, and let

$$\mathbb{H}_{m,n} := \{ x = (x^1, \dots, x^n) \in \mathbb{Z}^n : x^1 = \dots = x^m = 0 \}.$$

Determine the values of m, n for which simple random walk on \mathbb{Z}^n (started at the origin) visits $\mathbb{H}_{m,n}$ infinitely many times with probability one. Give a proof to justify your answer.

(b) Define, for $\alpha > 0$,

$$\mathbb{A}^\alpha:=\{x=(x^1,x^2,x^3,x^4)\in\mathbb{Z}^4: x^1=x^2=0,\; |x^4|\leq |x^3|^\alpha\}.$$

Prove that, if $\alpha < 1$, then simple random walk on \mathbb{Z}^4 (started at the origin) only visits \mathbb{A}^{α} finitely many times, almost surely.

- 4.-(a) State the main coupling theorem for random walks on \mathbb{Z}^d that was proved in the course. \checkmark
 - (b) Prove that if p is the transition function for a random walk on \mathbb{Z}^d that is irreducible and aperiodic, then for any fixed vector $v \in \mathbb{Z}^d$, we can construct, in the same probability space, two processes $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ such that:
 - (X_n) and (Y_n) are p-random walks on \mathbb{Z}^d started at the origin;
 - $X_n Y_n$ converges in probability to v as $n \to \infty$.
- 5. Fix $d \in \mathbb{N}$. For each $k \in \mathbb{N}$, let B_k be the subgraph of \mathbb{Z}^d induced by the vertex set $\{-k, \dots, k\}^d$. That is, B_k is the graph with vertex set $\{-k, \dots, k\}^d$ and having all edges $\{x, y\}$ for which $x, y \in \{-k, \dots, k\}^d$ and x, y are neighbors in \mathbb{Z}^d . Consider simple random walk $(X_n^{(k)})_{n \geq 0}$ on this graph, that is, the Markov chain whose state space is the set of vertices of B_k and which, from time n to time n + 1, jumps to a position chosen uniformly at random among all neighbors of the position at time n.
 - (a) Let π_k denote the invariant distribution of this walk. Show that for every vertex x of B_k , $\pi_k(x)$ is proportional to the degree of x in B_k . \vee
 - (b) Let

$$\mu_{k,n}(x) := \mathbb{P}(X_n^{(k)} = x \mid X_0^{(k)} = 0), \quad \vec{x} \in \{-k, \dots, k\}^d,$$

that is, $\mu_{k,n}$ is the distribution, at time n, of the walk on B_k started at the origin.

Prove that, if $(n_k)_{k\in\mathbb{N}}$ is a sequence of positive integers with $\frac{n_k}{k^2} \xrightarrow{k\to\infty} 0$, then $\|\pi_k - \mu_{k,t_k}\|_{\mathrm{TV}} \xrightarrow{k\to\infty} 1$.

6. For each $q \in \mathbb{R}$, q > 1, define

$$A_q = \{ \lfloor q^n \rfloor : n \in \mathbb{N} \},\,$$

where $\lfloor x \rfloor$ denotes the largest integer that is smaller than or equal to x. Let \mathbb{T}_q be a connected tree with the following properties:

- T_q has a distinguished vertex o called the root, with degree one (recall that the degree of a vertex is defined as its number of neighbors);
- for every vertex $x \neq o$, x has degree three (or "two children") if its distance to o belongs to A_q , and x has degree two (or "one child") otherwise.

For each value of q, determine if simple random walk on \mathbb{T}_q is recurrent or transient.